[![python-version](https://img.shields.io/pypi/pyversions/CoralNet-Toolbox.svg)](https://pypi.org/project/CoralNet-Toolbox)
[![version](https://img.shields.io/pypi/v/CoralNet-Toolbox.svg)](https://pypi.python.org/pypi/CoralNet-Toolbox)
[![pypi-passing](https://github.com/Jordan-Pierce/CoralNet-Toolbox/actions/workflows/pypi.yml/badge.svg)](https://pypi.org/project/CoralNet-Toolbox)
[![windows](https://github.com/Jordan-Pierce/CoralNet-Toolbox/actions/workflows/windows.yml/badge.svg)](https://pypi.org/project/CoralNet-Toolbox)
[![macos](https://github.com/Jordan-Pierce/CoralNet-Toolbox/actions/workflows/macos.yml/badge.svg)](https://pypi.org/project/CoralNet-Toolbox)
[![ubuntu](https://github.com/Jordan-Pierce/CoralNet-Toolbox/actions/workflows/ubuntu.yml/badge.svg)](https://pypi.org/project/CoralNet-Toolbox)
[![downloads](https://static.pepy.tech/badge/coralnet-toolbox)](https://pepy.tech/projects/coralnet-toolbox)
Quick Start
Running the following command will install the coralnet-toolbox
, which you can then run from the command line:
# cmd
# Install
pip install coralnet-toolbox
# Run
coralnet-toolbox
For further instructions please see the following:
Watch the Video Demos
TL;Dr
The CoralNet-Toolbox
is an unofficial codebase that can be used to augment processes associated with those on
CoralNet.
It usesโจUltralytics
๐ as a base, which is an open-source library for
computer vision and deep learning built in PyTorch
. For more information on their AGPL-3.0
license, see
here.
The toolbox
also uses the following to create rectangle and polygon annotations:
Enhance your CoralNet experience with these tools:
- โ๏ธ Annotate: Create annotations freely
- ๐๏ธ Visualize: See CoralNet and CPCe annotations superimposed on images
- ๐ฌ Sample: Sample patches using various methods (Uniform, Random, Stratified)
- ๐งฉ Patches: Create patches (points)
- ๐ณ Rectangles: Create rectangles (bounding boxes)
- ๐ฃ Polygons: Create polygons (instance masks)
- ๐ฆพ SAM: Use
FastSAM
, CoralSCOP
, RepViT-SAM
, EdgeSAM
, MobileSAM
, and SAM
to create polygons
- ๐งช AutoDistill: Use
AutoDistill
to access GroundingDINO
for creating rectangles
- ๐ง Train: Build local patch-based classifiers, object detection, and instance segmentation models
- ๐ฎ Deploy: Use trained models for predictions
- ๐ Evaluation: Evaluate model performance
- ๐ Optimize: Productionize models for faster inferencing
- โ๏ธ Batch Inference: Perform predictions on multiple images, automatically
- โ๏ธ I/O: Import and Export annotations from / to CoralNet, Viscore, and TagLab
- ๐ธ YOLO: Import and Export YOLO datasets for machine learning
TODO
- ๐ API: Get predictions from any CoralNet source model
- ๐ฅ Download: Retrieve source data from CoralNet
- ๐ค Upload: Add images and annotations to CoralNet
- ๐ฆ Toolshed: Access tools from the old repository