CoralNet-Toolbox

CoralNet-Toolbox πŸͺΈπŸ§°

CoralNet-Toolbox

AI-Powered Annotation for Coral Reef Analysis. An unofficial toolkit to supercharge your CoralNet workflows.

[![Python Version](https://img.shields.io/pypi/pyversions/CoralNet-Toolbox.svg?style=for-the-badge&logo=python&logoColor=white)](https://pypi.org/project/CoralNet-Toolbox) [![Version](https://img.shields.io/pypi/v/CoralNet-Toolbox.svg?style=for-the-badge&color=blue)](https://pypi.python.org/pypi/CoralNet-Toolbox) [![GitHub last commit](https://img.shields.io/github/last-commit/Jordan-Pierce/CoralNet-Toolbox?style=for-the-badge)](https://github.com/Jordan-Pierce/CoralNet-Toolbox) [![Downloads](https://img.shields.io/pepy/dt/coralnet-toolbox.svg?style=for-the-badge&color=brightgreen)](https://pepy.tech/project/coralnet-toolbox) [![PyPI Passing](https://img.shields.io/github/actions/workflow/status/Jordan-Pierce/CoralNet-Toolbox/pypi.yml?style=for-the-badge&label=PyPI%20Build&logo=github)](https://pypi.org/project/CoralNet-Toolbox) [![Windows](https://img.shields.io/github/actions/workflow/status/Jordan-Pierce/CoralNet-Toolbox/windows.yml?style=for-the-badge&label=Windows&logo=windows&logoColor=white)](https://pypi.org/project/CoralNet-Toolbox) [![macOS](https://img.shields.io/github/actions/workflow/status/Jordan-Pierce/CoralNet-Toolbox/macos.yml?style=for-the-badge&label=macOS&logo=apple&logoColor=white)](https://pypi.org/project/CoralNet-Toolbox) [![Ubuntu](https://img.shields.io/github/actions/workflow/status/Jordan-Pierce/CoralNet-Toolbox/ubuntu.yml?style=for-the-badge&label=Ubuntu&logo=ubuntu&logoColor=white)](https://pypi.org/project/CoralNet-Toolbox)

⚑ Get Started

1. Create Conda Environment (Recommended)

# Create and activate custom environment
conda create --name coralnet10 python=3.10 -y
conda activate coralnet10

# Install uv
pip install uv

2. (Optional) GPU Acceleration If you have an NVIDIA GPU with CUDA, install PyTorch with CUDA support for full acceleration.

# Example for CUDA 12.9; use your version of CUDA
uv pip install torch torchvision --index-url https://download.pytorch.org/whl/cu129

3. Install

# Use UV for the fastest installation
uv pip install coralnet-toolbox

Fallback: If UV fails, use regular pip: pip install coralnet-toolbox

4. Launch

coralnet-toolbox

See the Installation Guide for details on other versions.

🎯 GPU Status Indicators

Click the icon in the bottom-left to see available devices

πŸ”„ Upgrading

# When updates are available
uv pip install -U coralnet-toolbox==[latest_version]

πŸ“š Resources & Advanced Details

πŸ“Ί Watch the Demo Videos

Video Tutorial Series

🎬 Complete playlist covering all major features and workflows

From Bottleneck to Pipeline

Traditional benthic imagery analysis is time-consuming. Manual annotation, data management, and model training are often separate, complex tasks. CoralNet-Toolbox unifies this process, turning a research bottleneck into an integrated, AI-accelerated pipeline.

### πŸ“ **Core Annotation Tools** | Patch Annotation
**🎯 Patch Annotation** | Rectangle Annotation
**πŸ“ Rectangle Annotation** | Polygon Annotation
**πŸ”· Multi-Polygon Annotation** | |:---:|:---:|:---:| ### πŸ€– **AI-Powered Analysis** | Classification
**🧠 Image Classification** | Object Detection
**🎯 Object Detection** | Instance Segmentation
**🎭 Instance Segmentation** | |:---:|:---:|:---:| ### πŸ”¬ **Advanced Capabilities** | SAM
**πŸͺΈ Segment Anything (SAM)** | Polygon Classification
**πŸ” Polygon Classification** | Work Areas
**πŸ“ Region-based Detection** | |:---:|:---:|:---:| ### βœ‚οΈ **Editing & Processing Tools** | Cut Tool
**βœ‚οΈ Cut** | Combine Tool
**πŸ”— Combine** | Simplify Tool
**🎨 Simplify** | |:---:|:---:|:---:|

🌊 Success Stories

Using CoralNet-Toolbox in your research?

We’d love to feature your work! Share your success stories to help others learn and get inspired.


πŸ—οΈ Repository Structure

Visualization of the codebase

🌍 About CoralNet

Coral reefs are among Earth’s most biodiverse ecosystems, supporting marine life and coastal communities worldwide. However, they face unprecedented threats from climate change, pollution, and human activities.

CoralNet is a revolutionary platform enabling researchers to:

The CoralNet-Toolbox extends this mission by providing advanced AI tools that accelerate research and improve annotation quality.


πŸ“„ Citation

If you use CoralNet-Toolbox in your research, please cite:

@misc{CoralNet-Toolbox,
  author = {Pierce, Jordan and Battista, Tim and Kuester, Falko},
  title = {CoralNet-Toolbox: Tools for Annotating and Developing Machine Learning Models for Benthic Imagery},
  year = {2025},
  howpublished = {\url{https://github.com/Jordan-Pierce/CoralNet-Toolbox}},
  note = {GitHub repository}
}

### ⚠️ **Disclaimer** *This is a scientific product and not official communication of NOAA or the US Department of Commerce. All code is provided 'as is' - users assume responsibility for its use.* ### πŸ“‹ **License** *Software created by US Government employees is not subject to copyright in the United States (17 U.S.C. Β§105). The Department of Commerce reserves rights to seek copyright protection in other countries.*

Empowering researchers β€’ Protecting ecosystems β€’ Advancing science